ОБЗОР: Сравнительная оценка эффективности применения тепловых максимальных (пороговых), дифференциальных и дымовых пожарных извещателей.

На протяжении многих лет проектирование и внедрение различных по степени сложности автоматических систем пожарной сигнализации и пожаротушения для зданий и сооружений ведется стереотипно и в значительной степени формально, на основе морально устаревшего нормативного документа СНиП 2.04.09-84 "Пожарная автоматика зданий и сооружений". Не внес практически никакого прогресса в сложившийся десятилетиями стереотип мышления проектировщиков и нормативных работников ГПС введенные взамен СНиП 2.04.09-84 "Нормы и правила проектирования" НПБ 88-2000. Раздел этого нормативного документа, устанавливающий нормы и требования к размещению тепловых и дымовых пожарных извещателей, по аналогии с соответствующим разделом СниП 2.04.09-84, содержит минимум технических требований и притом самого общего характера. В результате, для защиты одного и того же помещения НПБ 88-2000 допускается применение пожарных извещателей, отличающихся по эффективности обнаружения пожара в десятки (!) раз. Для всех типов тепловых извещателей, независимо от их свойств и принципа действия (максимальные или дифференциальные) установлена одинаковая нормативная величина защищаемой ими площади, зависящая исключительно от трех условных градаций помещений по высоте, но независящая от высоты в пределах каждой градации. Никакой дополнительной информации о различии в применении тех и других извещателей нет, в то время как дифференциальные тепловые извещатели, в силу их физического принципа действия и известных свойств, в большинстве случаев десятки (!) раз эффективнее максимальных и в некоторых случаях в несколько раз эффективнее дымовых пожарных извещателей хотя бы потому, что переносчиком дыма является тот самый конвективный поток, на изменение температуры которого реагирует дифференциальный тепловой пожарный извещатель.

Проектировщики и тем более монтажники, работающие зачастую не по проектам, а по актам обследования объектов, не утруждают себя в обосновании выбираемого типа извещателя, тем более, что ни СниП 2.04.09-84 их к этому не обязывал, ни НПБ 88-2000 не обязывает и никто не несет ответственности за последствия в случае пожара, причинившего значительный ущерб.

Именно поэтому самое массовое применение в нашей стране и в СНГ, по инерции со времен СССР, нашли простейшие тнпловые пороговые максимальные извещатели типа ИП103-5, ИП104-2, ИП105, ИП109, ИП10331 или им аналогичные извещатели. Основное их достоинство - это простота и дешевизна, допустимость изготовления в кустарных условиях. Что же касается практической пользы от применения таких средств обнаружения, то во многих случаях она крайне низкая или близка к нулю.

По видимому, именно этим обстоятельством и была вызвана необходимость срочной разработки в введения в действие ГУГПС МВД России в августе 2001 года изменения № 1 в НПБ 110-99, главным итогом которого стало нормативно закрепленное значительное ограничение области применения тепловых максимальных пожарных извещателей. В частности, пункт НПБ 110-99 дополнен абзацем, согласно которому здания и помещения, перечтсленные в пунктах 2.9, 2.12, 2.13, 2.15, 2.16, 2.19, 4.17-4.21, 4.23-4-33, 4.35-4.39 и 4.41 НПБ 110-99, подлежат оборудованию дымовыми пожарными извещателями. Однако и в этом, безусловно прогрессивном шаге ГУГПС и ВНИИПО, сказалась инерция традиционного отождествления свойств тепловых максимальных (пороговых) пожарных извещателей с их дифференциальной разновидностью, обладающей более высокой обнаружительной способностью.

Вместе с тем, как показывают экспериментальные исследования и математическое моделирование теплофизических процессов при наличии в помещении прогрессирующего по площади или в только в одном измерении, т.е. развивающегося во времени очага пожара, для подавляющего большинства объектов по эффективности применения дифференциальные тепловые пожарные извещатели могут в десятки, а то и в сотни раз превосходить наиболее широко применяемые (в силу незначительной их стоимости) тепловые максимальные извещатели и как будет показано ниже - в несколько раз могут быть эффективнее дымовых пожарных извещателей.

Автоматическая установка пожаротушения водится в действие после обнаружения извещателями очага пожара, к моменту его обнаружения уже имеющего вполне конкретные теплофизические характеристики, главными из которых являются: тепловая мощность (тепловая энергия, выделяемая очагом горения в единицу времени) и площадь поверхности, в пределах которой локализована эта тепловая мощность - площадь горения. Именно эти характеристики очага пожара предопределяют величину материального ущерба, уже причиненного пожаром к моменту его обнаружения установкой пожарной сигнализации - ущерба, включающего стоимость сгоревших материальных ценностей плюс потери, которые образуются от момента обнаружения до момента начала тушения, а также потери, которые образуются в процессе тушения пожара. При этом, кроме прямого ущерба, имеет место косвенный ущерб, и не только материальный. Поэтому вопрос раннего обнаружения маломощного очага пожара (загорания) является одним из основных, а может быть и главным вопросом при оценке эффективности применения конкретной системы пожарной автоматики.

Очевидно, что наиболее объективным критерием эффективности применения конкретных типов извещателей или установки пожарной сигнализации и автоматического пожаротушения является величина предотвращенного материального ущерба от пожара с учетом собственной стоимости извещателей, установленных в защищаемом помещении (при этом приемно-контрольное оборудование и пожарные оповещатели в расчет не принимаются, поскольку это оборудование - общее для конкурсных или сравниваемых вариантов).

Автоматические пожарные извещатели, являющиеся первичным источником информации для любой системы пожарной сигнализации, пожаротушения, других устройств пожарной автоматики, должны реагировать на раннее появление избыточной температуры или продуктов распада термического очага, выделяющихся при возникновении такого очага и формировать сигнал еще до появления открытого пожара.

Принципиально важно отличать содержания понятий "очаг загорания" и "пожар". Очаг загорания - это может быть еще относительно низкотемпературный процесс без открытого пламени, сосредоточенный на достаточно малой площади(30-50 см? ), но способный выделять тепло и продукты горения. Назначение современной пожарной автоматики состоит в том, чтобы не допустить переход очага загорания в пожар, за счет своевременного (наиболее раннего, но достоверного) обнаружения и ликвидации этого очага вручную или средствами автоматики.

Часто употребляемый афоризм "не бывает дыма без огня" мало соответствует физической сущности процесса появления дыма. Для появления дыма в подавляющем числе случаев достаточно некоторого тепла в горючей среде и совсем не обязательно наличие огня - открытого пламени. Более того, во всех случаях с появлением открытого пламени выделяемое количество дыма уменьшается. В любом случае в начальной стадии появления и развития очага горения возникает соответствующей величины поднимающийся тепловой поток, а затем по мере увеличения теплоты очага горения, в зависимости от дымообразующей способности горючего материала, выделяется дым. Распространение дыма в закрытом помещении полностью подчиняется закономерностям движения в нем теплового потока. Следовательно, в целом ряде случаев тепловые дифференциальные извещатели способны обнаружить маломощный очаг загорания даже раньше, чем дымовые, т.е. могут быть более эффективными, чем дымовые.

НПП "Специнформатика-СИ" располагает достаточно апробированными научно обоснованными расчетными методами выбора необходимого типа (типов) пожарных извещателей из числа дымовых, тепловых максимальных и тепловых дифференциальных, а также их оптимального размещения на конкретных объектах, по ряду исчерпывающих критериев эффективности. Основные положения данных материалов в виде "Методики инженерных расчетов оптимального выбора и размещения пожарных извещателей в помещениях в конце 80-х годов была согласована ГУПО, ВИПТШ, ВНИИПО, а также одобрена ученым советом НИПТШ и утверждена в установленном порядке. Некоторые положения из этой методики использованы при подготовке данной статьи, в которой поставлена задача продемонстрировать существенное различие по эффективности применения тепловых максимальных извещателей, срабатывающих при достижении температуры в месте установки извещателя пороговой величины 70?С и тепловых дифференциальных извещателей, срабатывающих в течение значительно меньшего времени при средней скорости нарастания температуры, например (5-7)?С/мин в месте его установки, например теплового дифференциально-максимального извещателя типа ИП101-18 А2R1 "МАК-ДМ" исп.01. Покажем это на конкретных примерах.

Примем в качестве объекта реальные, наиболее часто встречающиеся помещения с высотой 3,5м, 6м и 9м, с горючим материалом в виде древесины (или в целом -целлюлозосодержащие), для которого известны: линейная скорость распространения 10"? кг/м?, теплота сгорания 1,5 х 104 кДж/кг, коэффициент дымообразования 130 Неп х м?/кг.

В качестве исходных данных примем нормы по размещению извещателей, изложенные в НПБ 88-2000:

· при высоте помещения 3,5 м контролируемая площадь одним извещателем 25 м?;

· при высоте помещения 6 м контролируемая площадь одним извещателем 20м?,

· при высоте помещения 9м контролируемая площадь одним извещателем 15 м?.

В результате проведенных расчетов по указанной выше методике получены следующие результаты для сравнения основных показателей применения тепловых извещателей порогового принципа действия ИП105, ИП109, ИП103-5 ИП10331 и извещателей дифференциального принципа типа "МАК-ДМ" исп.01 Сравниваемые основные показатели обнаружения приведены в таблице 1.

Таблица 1

№п/п

ВЫСОТА ПОМЕЩЕНИЯ, м

3,5

6,0

9,0

КОНТРОЛИРУЕМАЯ ПЛОЩАДЬ по СниП, м²

25,0

20,0

15,0

1.

Обнаруживаемая мощность очага в кВт для:

ИП 10331

913

1670

2535

ИП 109

ИП 103-5

МАК-ДМ исп.01

54,7

194

260

2.

Обнаруживаемая площадь горения для извещателей:

ИП 10331

7,64

18

31,2

ИП 109

ИП 103-5

МАК-ДМ исп.01

0,46

1,6

2,1

Как видно из таблицы 1, величина обнаруживаемой тепловой мощности очага горения дифференциальным извещателем типа "МАК-ДМ" исп.01 при высоте потолка 9 м составит 260 кВт, а обнаруживаемая тепловая мощность очага горения тепловыми максимальными извещателями (любым из перечисленных выше) при этой же высоте составит уже 2535 кВт. Разница составляет 2275 кВт (при высоте помещения 6м эта разница составит 1476 кВт, при высоте 3,5 м - 858 кВт). Более того, в первом случае необходимо ликвидировать очаг пожара мощностью 260 кВт на площади 2,1м?, а во втором - очаг с тепловой мощностью уже 2535 кВт, на площади 31,2 м?. Если в первом случае можно потушить обнаруженный очаг пожара простыми подручными средствами, то во втором требуется профессиональное тушение.

Из приведенных сравнений конечных результатов применения тепловых дифференциальных и максимальных пожарных извещателей наглядно просматривается значительная разница по их эффективности.

Для реального помещения высотой 3,5 м и площадью 250 м?, (горючий материал древесина или целлюлозосодержащие предметы) расчеты дают следующие результаты:

При установке 10 тепловых максимальных извещателей (контролируемая одним извещателем площадь - 25м?, в соответствии с НПБ 88-2000), может быть обнаружен очаг пожара (загорание) с тепловой мощностью приблизительно 913 кВт, при этом площадь горения составит около 7,6 м? (2,76х2,76м?). Такое же количество дифференциальных тепловых извещателей позволит обнаружить в таком же помещении загорание с тепловой мощностью не более 55 кВт, при этом площадь очага горения не превысит величины 0,5 м? (0,7 х 0,7м?). Даже в случае применения 250 максимальных извещателей (в этом случае контролируемая одним извещателем площадь, в среднем, составит 1м?) возможно обнаружение загорания на уровне приблизительно 240 кВт, при площади горения около 2 м?.

Приведенный пример убедительно показывает, что применение в помещениях высотой 3,5 м и площадью 250 м? 10 тепловых дифференциальных извещателей типа "МАК-ДМ" исп.01 более эффективно, чем 250 штук максимальных извещателей с пороговой температурой срабатывания 70?С, как по минимальной обнаруживаемой тепловой мощности (в 4,4 раза), так и по общей стоимости (в 5 раз).

Таким образом, дифференциальный тепловой извещатель типа "МАК-ДМ" исп.01 при равных условиях способен обнаружить очаг пожара (загорание), как по тепловой мощности, так и по площади горения в 16,6 раз меньший, чем способны обнаружить максимальные тепловые извещатели типа ИП109, ИП10331, ИП105, ИП103-5, ИП104-2 и им подобные (при одинаковым количестве извещателей обоих сравниваемых типов в помещении высотой 3,5м). Другими словами, в одном и том же помещении в 25 раз меньшим количеством дифференциальных тепловых извещателей можно обнаружить в 5 раз меньший по тепловой мощности и площади горения очаг пожара, по сравнению с максимальными тепловыми извещателями с пороговой температурой 70?С.

Уникальные возможности дифференциальных тепловых пожарных извещателей реализуются при меньших затратах и большей эффективности, чем и надо руководствоваться при выборе типа извещателя конкретного объекта. Тем более, что НПБ запретов в этой части не содержит. Необходимо в порядке констатации внести соответствующие пояснения в действующие нормативные документы, в частности, НПБ 88-2000 и устранить очевидный парадокс, заключающийся в совершенно неграмотном подходе к нормированию для тепловых пожарных извещателей с совершенно различными свойствами так называемой "защищаемой площади", без учета их реальных теплотехнических характеристик.

Ведь очевидно каждому инженеру, что ни при каких обстоятельствах не могут иметь одинаковую способность в реакции на одинаковый очаг пожара (статичный или прогрессирующий во времени) абсолютно все разновидности тепловых извещателей, от ТРВ-1(2) с массой 2,5-3,0 кг до современных дифференциальных, причем в этот же ряд автоматически попадают и все типы спринклерных оросителей, в том числе - с водозаполненной распределительной сетью и с любым типом запорно-пусковой арматуры.

Для сравнения по обнаружительной способности дымовых пожарных извещателей типа "ДИП-3М", "ДИП-У" (и подобных им) и тепловых дифференциальных извещателей типа "МАК-ДМ" исп.01 примем в качестве исходного условия, что для помещения высотой 3,5 м и площадью 250 м? по НПБ 88-2000 требуется установить три извещателя "ДИП-3М" (по 80 м? на один извещатель), которые, как показывают расчеты по той же методике, способны обнаружить очаг пожара с тепловой мощностью не менее 150 кВт при площади горения около 1,3 м? (для целлюлозосодержащих материалов с достаточно высоким коэффециентом дымообразования 130 Неп. Х м?/кг и высоким коэффециентом светоотражения, т.е. для материалов с наиболее благоприятными физическими характеристиками для оптико-электронных дымовых пожарных извещателей).

Результаты аналогичных расчетов показывают, что в помещении с аналогичными размерами и такой же горючей нагрузкой 3 тепловых дифференциальных извещателя типа "МАК-ДМ" исп.01способны обнаружить очаг пожара с тепловой мощностью в 2,5-3,0 раза меньшей, чем очаг пожара, обнаруживаемый 3 дымовыми пожарными извещателями типа "ДИП-3М", "ДИП-У" или подобным.

Этот вывод остается справедливым для подавляющего числа реальных помещений и тем более он справедлив для помещений, в которых содержатся (хранятся) горючие материалы, характеризующиеся более высокой, чем целлюлозосодержащие теплотой сгорания, а также меньшей дымообразующей способностью и более низким, чем у целлюлозосодержащих материалов коэффициентом светоотражения их дыма (темные дымы резиносодержащих материалов, ГСМ и др.).

Более того, наш длительный опыт показывает, что все оптико-электронные дымовые пожарные извещатели как отечественные так и зарубежные, имеют общий существенный недостаток, заключающийся в том, что они полностью утрачивают работоспособность при запылении и загрязнении их оптических элементов, запылении и загрязнении каналов входа дыма через защитную сетку в дымочувствительную камеру извещателя липкой (смолистой) мелкодисперсной технической массой, трудно поддающейся удалению простым продуванием. Требуется тщательная промывка. При этом полностью неработоспособное состояние (скрытый отказ) дымового пожарного извещателя внешне никак не проявляется и он находится в неработоспособном состоянии до очередного регламентного технического обслуживания, если оно вообще проводится после сдачи системы (объекта) в эксплуатацию. Попытка осуществлять автоматическое диагностирование состояния такого извещателя принципиально ничего не дает, т.к. диагностика позволяет контролировать электронную схему и в некоторой степени запыленность внутри чувствительной дымокамеры, но никак не диагностирует загрязнение входных каналов прохождения дыма в чувствительную камеру. Исчерпывающую работоспособность дымового извещателя можно проверить только подачей дыма из вне. Учитывая указанный недостаток всех оптико-электронных дымовых извещателей наше предприятие НПП "Специнформатика_СИ" разработало, сертифицировало и серийно выпускает комбинированные дымотепловые пожарные извещатели "ИДТ-2", в которых применяются в одной модификации "ИДТ-2" тепловой элемент релейного порогово-максимального действия при температуре 62?С и более, а во второй модификации предусмотрен достаточно чувствительный и малоинерционный тепловой элемент, срабатывающий при нарастании температуры со скоростью (5-7)?С/мин (т.е. дифференциальный). Такого рода комбинированные извещатели обладают более высокой живучестью и универсальностью применения, в значительной степени компенсируют часто допускаемые ошибки проектировщиков в выборе типа извещателя и повышают гарантированность обнаружения загорания по двум признакам. Стоимость комбинированных извещателей "ИДТ-2" соизмерима со стоимостью обычных дымовых извещателей.

Резюмируя изложенное выше, можно сделать следующие выводы:

  1. Тепловой пожарный извещатель дифференциально-максимального действия "МАК-ДМ" исп.01, формирующий сигнал о пожаре при нарастании температуры в помещении со скоростью (5-7)?С/мин, обладает универсаль- ностью и способностью обнаружить очаг загорания на самой ранней стадии его возникновения по скорости нарастания температуры (5-7)?С/мин и во много раз эффективнее в применении для абсолютного большинства объектов, чем любой из порогово-максимальных тепловых пожарных извещателей типа ИП105, ИП109, ИП103-5, ИП104-2, ИП10331 и аналогичных, в т.ч. импортных, и в ряде случаев является более эффективным извещателем обнаружения, чем дымовые пожарные извещатели типа "ДИП-3М", "ДИП-У" и им аналогичные. Универсальность извещателя "МАК-ДМ" исп.01 состоит в том, что при малых скоростях нарастания температуры он срабатывает как порогово-максимальный извещатель.
  2. Является очевидным и доказано многолетним опытом применения дымовых оптико-электронных извещателей, что они со временем склонны к полной потере работоспособности обнаруживать очаг загорания по дыму в связи с загрязнением каналов прохода дыма в камеру. Подчеркиваем, что никакая электронная автоматическая диагностика извещателя принципиального положения не меняет. Поэтому применять надо более живучие комбинированные дымотепловые извещатели "ИДТ-2", которые выпускаются нашим предприятием в двух модификациях: с тепловым элементом порогового срабатывания при температуре более 62?С и с тепловым элементом срабатывающим при скорости нарастания температуры (5-7)?С/мин.

    Подчеркиваем, что применение комбинированных дымотепловых извещателей ИДТ-2 срабатывающих как по дыму так и по скорости нарастания температуры, значительно повышает гарантию не пропустить раннее обнаружение загорания вообще и особенно при полном никак не проявляемом отказе по дыму, при ошибочном выборе проектировщиком типа извещателя (дымового вместо дифференциального теплового).

    Ошибочно считают, что дымовой извещатель всегда более эффективен. нередко при анализе объектов, где возможно загорание и горение материалов с низким коэффициентом дымообразования, выясняется, что более эффективным извещателем, способным обеспечить раннее обнаружение загорания является тепловой дифференциальный "МАК-ДМ" исп.01. Оказывается, что он и дешевле и эффективнее.
  3. Подавляющее число тепловых порогово-максимальных извещателей как правило технически простые, индифферентны к колебаниям окружающей среды, устойчивы в эксплуатации, дешевые по цене и все это в совокупности надо учитывать. НПП "Специнформатика-СИ" разработан и серийно выпускается новый тепловой порогово-максимальный извещатель со световым индикатором срабатывания МАК-1 исп.011. Наличие светового индикатора срабатывания в извещателе в значительной степени упрощает контроль работоспособности их при сдаче объекта в эксплуатацию после монтажа, а также улучшает условия профилактического обслуживания. И тем не менее перечисленные достоинства их являются всего лишь составной частью оценки общей интегральной эффективности предотвращения ущерба от пожара. И мы располагаем научно обоснованной методикой расчета такой эффективности, о которой более подробно напишем в отдельной статье.

Автор: Шаровар Фёдор Иванович. Генеральный директор НПП Специнформатика-СИ доктор технических наук, профессор.